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Abstract. This paper considers path planning problem in presence of
imprecise obstacles for a single robot. The workspace including start and
end points named s and e, respectively and its obstacles are considered
to be n imprecise segments whose endpoints correspond to one of 2 X n
regions on the plane. We study the problem of arranging the obstacles
by placing a point inside each region in such a way that maximize or
minimize the shortest path distance between s and e. First we study the
decision version of the Maximum Shortest Path (Max-SPP) Problem. We
prove NP-completeness of the problem if the Euclidean metric is used.
Following that, we obtain a similar result by proving the problem with the
Manhattan distance as metric. When each imprecise region are modeled
as independent disjoint disks, we propose an algorithm for Max-SPP with
approximation factor % If regions are dependent on separation factor k,
then we obtain the approximation factor of 1 — ki+4' Furthermore, we
show that the Minimum Shortest Path Problem (Min-SPP) is NP-hard
for any metric L, ,p > 1. Finally, in a similar approach to Max-SPP, we
propose a parameterized approximation algorithm for Min-SPP.

Keywords: Computational Geometry, NP-hard Problems, Imprecise Data,
Uncertainty, Robot Path Planning, Approximation Algorithms.

1 Introduction

Regarding the widespread applications of robotics in everyday life, the necessity
of investigation over motion planning problems has currently become evident.
It is unsurprising, therefore, that planning a path for robots within a workspace
with obstacles has been under investigated as an intriguingly applicable problem.
Taking some constraints and properties of robots and workspaces into consider-
ation, various approaches have been suggested for the path planning problem,
for instance cell decomposition [21], sampling roadmaps [11] and potential fields
[2]. These approaches assume the workspace, data processing, and robot motions
completely in precise manner.

In addition to the mechanical constraints of robots, a raft of data is inac-
cessible due to the different sources of error, such as collecting real data about
the world and its dynamical properties. Clearly, these uncertainties make these
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approaches in precise manner inefficient. Accordingly, imprecision consideration
will draw a more complete and accurate picture of path planning.

Generally, in order to model the imprecision in the path planning prob-
lem, the probability and fuzzy theories have been used [23]. In contrast, this
present study utilizes the less complex geometrical approaches, namely region-
based models [16], linear parametric geometric uncertainty model (LPGUM)
[10] and X — geometry [4]. In first model, a set of imprecise regions in the plane
such as segments, disks or convex polygons are assumed to be a set of imprecise
points. The precise point may appear anywhere in the region with a uniform
probability. The goal in the region-based models is finding critical point of each
geometric region in order to minimize or maximize a specific values. For exam-
ple, the problem of finding Minimum Spanning Tree (MST) for some regions
as imprecise points, turn out to be the problems of finding the Minimum and
Maximum-weight MST [8]. While the region-based models cannot handle depen-
dency among imprecise regions, LPGUM supports such a dependency [20]. The
third model is an innovative model for handling a dynamic level of imprecision.

For a sequence of simple polygons and two points s and e, Touring Polygons
Problem (TPP) is looking for a tour from s to e so that all polygons are visited
in the given order. A more general form of TPP is the Shortest Path Problem
(hereafter: SPP) for imprecise points. In this problem, a graph of polygons is
given instead of an order of polygons. In directed graph, the traverse between
vertices is only allowed through the edges. The aim of SPP is to find a placement
of the vertices which minimizes the shortest distance between s and e. The
maximum variant of SPP, has been studied which searched for such a placement
that maximizing the shortest path distance between s and e.

An imprecise segment is a segment that at least one of its endpoints is a
region instead of a point. In addition to s and e, workspace consists of imprecise
segments as obstacles. Our goal in Maximum Shortest Path Problem (hereafter:
Max-SPP) and Minimum Shortest Path Problem (hereafter: Min-SPP) is placing
a point inside each region in order to arrange the obstacles such that the shortest
path from s to e becomes maximum and minimum, respectively. In other words,
Max-SPP is SPP in continuous space instead of graph.

This paper makes the following contributions:

1. In both Manhattan and Euclidean metrics, we prove NP-completeness for
the decision version of Maxz-SPP when the imprecise regions are modeled as
segments in the region-based models.

2. When the imprecise regions have been modeled as disjoint disks, we propose
an algorithm for Max-SPP with approximation factors 1— 1%4 and % in cases
where the regions are k-separable disks (see Definition 7) and not k-separable
disks, respectively.

3. We show the NP-hardness of Min-SPP for any metric L, ,p > 1 when the
imprecise regions are modeled as segments in the LPGUM.

4. We propose an algorithm for Min-SPP with approximation factor 1 + %,

when the imprecise regions are k-separable disks (see Definition 7).
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The rest of paper is organized as follows: Section 2 overviews some of re-
lated works. In Section 3, we formulate Max-SPP and Min-SPP as well as other
associated problems. Next, in Section 4 we show hardness results for Max-SPP
and propose an approximation algorithm for it. Then, Section 5 represents our
consequences of Min-SPP. Finally, we conclude our contribution in Section 6.

2 Related Works

LofHer and van Kreveld discussed the convex hull of imprecise points in various
types of regions which maximize or minimize area/perimeter of the convex hull
[17]. For each variant they either provide an NP-hardness proof or a polynomial-
time algorithm.

By taking the parameter dependencies into consideration, Joskowicz et al. [10]
introduced LPGUM for describing uncertainties of positions and shapes such as
points and lines. They proved that the complexity of basic geometric entities is
low-polynomial in the number of dependent parameters. Myers and Joskowicz
[19] provided algorithms for the closest pair, diameter and bounding box prob-
lems as well as a few efficient algorithms for uncertain range queries in LPGUM.

Dror et al. in [9] showed that for convex and disjoint polygons TPP is solv-
able in polynomial time. NP-hardness of such a problem has been proved in
any metrics, Lp, p > 1 in case of non-convex polygons (i.e. they are disjoint
[1] or overlapping polygons [9]). This problem for non-convex rectilinear axis-
aligned polygons under Manhattan metric is known to be polynomially solvable
[9]. Moreover, some approximation algorithms are given for TPP in cases the
polygons are non-convex [13,22]. Also, the maximum variant of TPP is explored
by Disser et al. in [7] that provided a polynomial time algorithm for computing
a maximum placement.

In general, SPP is NP-hard for any metric L,, p > 1. Disser et al. in [6]
showed that for axis-aligned rectilinear polygons (not necessarily convex) under
Manhattan metric, proposing a polynomial time algorithm is feasible. Their
study in [7] shows that the problem is hard to approximate for any approximation
factor (1 — €) with € < 1/4, even when the polygons consist of only vertically
aligned segments.

3 Problem Formulation

Free Space: In this work, we assume points of s and e to be located within the
free space. In the precise manner, the free space is introduced as all points in
the workspace that do not belong to any obstacles. However, in the imprecise
manner, the free space refers to all points that do not belong to any obstacles for
all possible placements. So, there are no placements for which obstacles contain
points of s and e. In other words, s and e are not allowed to be located in the
obstacles for any possible placement.

For a robot, we consider a workspace containing start point s, end point e
in free apace and a set of imprecise segments as obstacles (see Fig. 1 (left)). We
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Fig. 1. Left: A workspace containing a set of imprecise segments as obstacles. Middle:
An ™ placement for the workspace. Right: An Z™'" placement for the workspace.

define the imprecise points or regions as a set R = {Ry, Rz, R3,...,R,}; R; C
R%,1 < i < n. where n is the number of obstacles’ endpoints in workspace.
Suppose Z to be a set of points that we achieve by placing a point or instance
inside each region of R, like the placement

I:{Il,IQ,Ig,‘..,In};IZ'GIRi,lgign (1)

If £(Z) refers to the length of the shortest path from s to e for the placement
Z, then in the Max-SPP, the goal is to maximize £(Z) by setting suitable
placement like

ITVI(L"L‘ — {I{ﬂ(lft’ 5”@.’1)7 I%na:};7 .. 7];{“1"1}}; I;;Vnal' e RZ, 1 < 7/ < n (2)

(Z)me* represents a placement which maximizes the shortest path length be-
tween s and e. As an example, for the workspace in Fig. 1 (left panel), we have
shown an Z™%* placement in the middle panel.

The Decision Version of Max-SPP:

Input: R as a set of imprecise points, points of s and e beside a length value
of B.

Output: YES if there exists a placement like Z that £(Z) > B, NO otherwise.

We proceed to minimize £(Z) for a disk robot by placing a dependent or
independent single point or instance in each region of R for (Z)™" placement.
This is indeed the Min-SPP. Here 77" represents the placement resulting the
minimum possible shortest path (see Fig. 1 (right panel)).

The Existence Path Problem (hereafter: EPP) is a problem whose answer
is YES if there exists a path from s to e for at least a set of Z C R, NO otherwise.
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Fig. 2. A circle is divided into arcs in which all the segments passing through o represent
obstacles. The points s and e located by some sufficiently small ¢ > 0 above and below
the separator point of z.

4 Maximum Shortest Path Problem (Max-SPP)

In this section, with the help of reduction from the SAT problem to Max-SPP,
we show the hardness results for Max-SPP. Since the approach for NP-hardness
proof of the Largest Convex Hull problem in [17] is not applicable for Max-SPP,
we add some crucial obstacles to the workspace.

For a given SAT instance (formula 1), we construct a Max-SPP instance.
For this, we setup R (%) including imprecise obstacles’s endpoint. Then, we prove
that the decision version of Max-SPP returns YES if and only if the SAT formula
1) is satisfiable.

As illustrated in Fig. 2, for converting the SAT formula to the Max-SPP
instance, we divide a circle into M = ¢ + ¢ arcs which ¢ and ¢ are the numbers
of clauses and variables in formula 1, respectively. The ¢ clauses and ¢ variables
of 1 are characterized as arcs in the Max-SPP instance. The circle contains one
arc for each clause and one arc for each variable as well as two points s, e and
M separator points that separate arcs from each other. We locate the points s
and e by some sufficiently small ¢ > 0 above and below the separator point of z.
In addition, to insert some obstacles we draw segments from circle center at o to
all separator points and a segment from point of z to the workspace boundary.

Variable Arcs Configuration: As Fig. 3 (left) shows, for each variable in
1 like v, we have an arc that contains:

(a) An imprecise region named Ir. o

(b) A segment parallel to Ir (shown as tf).

(¢) Two sets of points, P, and Q,,, with the same number of elements equal to
3c.

Notably, although the points in P, corresponding to each variable like v are
placed such that they are all on the convex hull of {I,r, f}, P, and Q,, they are
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Fig. 3. left: A variable arc. right: A clause arc.

not on the convex hull of {l,r,t}, P, and @,. As shown in Fig. 3 (left), points in
Q. are symmetrical with P,,.

Clause Arcs Configuration: As Fig. 3 (right) shows, for each clause in 1
like ¢ we have an arc contains of point h.. If the variable v appears in clause ¢
as a positive literal, we connect the point h. to a member of P,. If the variable
v appears in clause c as a negative literal, we connect the point h. to a member
of Q,. In this way, the segments as imprecise regions would be produced.

e the connection between the workspace boundary and the separator point of
z.

e the connection between the circle center at o and all separator points.

e the connection between the circle center at o and the imprecise regions with
an endpoint h. and the other in P, or @, sets.

e the connection between the circle center at o and the imprecise regions with
endpoints at ¢t and f.

Finally, in the workspace constructed by formula v, maximizing the shortest
path between s and e is equivalent to the sum of the maximized shortest paths
between two separator points. So, in order to maximize the shortest path between
two separator points (which locate on a single arc) for every variable arc like v,
the selected endpoint should be either ¢ together with all points in @, or f
together with all points in P,. Moreover, for the optimal placement of Z"%*
point h. should be selected in each clause arc such as c.

Definition 1 We define B=L(I), if the placement I contains t, points in Qv
in all variable arcs and points of h. in all clause arcs.

Theorem 1. Suppose we are given a workspace contains a set of segment obsta-
cles and a set of imprecise points as obstacles’ endpoints. Obstacles are assumed
to be arbitrary segments that can have common intersections only at their end-
points. For such a workspace with these imprecise obstacles, Max-SPP is NP-hard
under the Fuclidean metric and its decision version is NP-complete.

Proof. We show that for the value of B the decision version of Max-SPP returns
YES if and only if the formula ¢ is satisfiable.
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True or false value for any variable is achievable if there exists a satisfying
truth assignment for formula v. So, from all segments ¢ f we take point ¢ for true
variables and f for false variables. These selections form the placement of Z for
variable arcs.

If value of variable v is

e True (i.e. point t), then for setting placement Z we take points in set @,
from all variable arcs. In addition, we choose point h. from each clause arc.
In other words, we take point h. from at least one of segments hp;,1 <i < n
(note that p; € P, for some 1).

e False (i.e. point f), then for setting placement Z we take points in set P,
from all variable arcs. In addition, we choose point h. from each clause arc.
In other words, we take point h. from at least one of segments hg;,1 <i < n
(note that ¢; € Q, for some 7).

Owing to the fact that points of @, and P, are symmetric, we conclude that
L(Z) = B. Therefore, the decision version of Max-SPP returns YES for the value
of B.

Now, returning YES for the value of B in the decision version of Max-SPP
means that there exists a placement Z for which £(Z) = B. Then the placement
7 consists of either the mentioned points in Definition 1 or point f and set P,
in the variable arcs instead of ¢t and @,. According to the value of shortest path,
all the points h. in clause arcs must be necessarily selected. This implies that
according to the variables values there exists a satisfying truth assignment for
formula ). |

So far, we showed the NP-hardness of Max-SPP under the Euclidean metric.
The question arises as whether the Theorem 1 is still correct under the Man-
hattan metric or not? As illustrated in Fig. 4, we have the same obstacles as we
had in Theorem 1. Now, for maximizing the shortest path from point [ to r in
a variable arc, we do not need to choose point ¢ together with points in set @,
nor point f together with points in set P,. In other words, the points of P, or
@, have no effect on the length of the path.

Theorem 2. Suppose we are given a workspace contains a set of segment obsta-
cles and a set of imprecise points as obstacles’ endpoints. Obstacles are assumed
to be arbitrary segments that can have common intersections only at their end-
points. For such a workspace with these imprecise obstacles, Maz-SPP is NP-hard
under the Manhattan metric and its decision version is NP-complete.

Proof. We prove this theorem in the same way of theorem 1. The only difference
is that some proper obstacles are added to the Max-SPP instance in order to
make s to e shortest paths equivalent in both the Manhattan and the Euclidean
metrics.

In addition, according to Fig. 5 we modify the variable arcs by adding points

1; and 4, in arcs 12 and 23. Then, we have two new obstacles by connecting 7,
and 4, to the workspace boundary.
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Fig. 4. Solid thick lines represent the shortest path from point ! to 7 under the Man-
hattan metrics and dashed lines are the shortest path under Euclidean metrics.

Definition 2 A number of connected points are introduced as a chain. Now, if
at least one of the points is a imprecise region then the chain is known as an
imprecise chain.

Definition 3 Members of set G are defined as points located in a sufficiently
small distances above each point of sets P, and @Q,. In more accurate words,
none of the members of set G can be horizontally aligned with their next and
previous points in sets P, and Q, (refer to Fig. 5).

After adding points of set G to the variable arcs, we connect these points
to the imprecise region of tf in the corresponding arc. Furthermore, we obtain
some imprecise chains by connecting the imprecise region ¢ f to the circle center
at o and the points of set G.

Eventually, by adding the new obstacles to the workspace in Theorem 1, we
claim that whether point f together with all points in set P, or point ¢ together
with all points in set ), must be selected in order to find the optimal placement
in Manhattan metric. u

Up to this point, we proved in Theorem 1 and 2 that Max-SPP in region-based
models under the mentioned conditions is NP-hard. Therefore, one can also
prove in the same way that in A — geometry model for any constant value of A,
Max-SPP is NP-hard and its decision version is NP-complete.

4.1 Approximation Algorithm for Max-SPP

Regarding the NP-hardness of Max-SPP, the approximation algorithms could
be used for estimating the solution. For approximating the optimal placement of
Max-SPP, we focus on those workspaces which their obstacles are just segments
and their imprecise endpoints are disjoint disks. Our approximation algorithm
simply selects center of disks as placement Z (i.e. as an approximate placement).
We have proved that in this algorithm, £(Z) is not smaller than half of that in
optimal placement.
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Fig. 5. New variable arc in Manhattan metric.

Definition 4 Let L(Z®™*") and SP(Z°°™*") denote respectively the solution
value and the shortest path of the approzimation algorithm that selects the disks’
centers as the placement .

Definition 5 We define SP(Z™) and L(Z™*) as the shortest path and its
length in the optimal placement for Max-SPP, respectively.

Definition 6 We suppose SP’(Z™%%) is the path from s to e with the same
topology' as SP(Z™°"). Noticeably, this path is not necessarily the shortest
path.

Let £L(Z™**) and L(SP'(Z™**)) stand for the length of paths from s to e for
paths SP(Z™) and SP’(Z™*"), respectively. Then we have

E(Imaa:) < ,C(SP/(Imax)) (3)

Theorem 3. Consider a workspace such that the imprecise obstacles’ endpoints
are disjoint disks. Now, in the approximation algorithm assuming the center of
all disks as the placement €™ for Max-SPP, we have

1
i‘C(ImaI) < £(Icenter) (4)
Proof. First, we show the correctness of the following equation.

E(SP/(ImaxD < 2£(Icenter) (5)

As SP/(Z™) and SP(Z°"*") are topologically the same, then we have Fig.
6 for any disks throughout the path SP’/(Z™%) or SP(Z¢"*"). Where a and b
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L
o

Fig. 6. A sample disk throughout path SP(Z°°""**") or SP'(Z™*).

represent points outside the disk and o refers to center of disk. Point w is also a
member of Z™% corresponding to the disk throughout the path SP’(Z™%%).

According to the fact that p and ¢ are the farthest points from a and b on
the disk’s perimeter, respectively, we obtain Eq. (6a). On the other side, since
the disks are completely disjoint then @6 > op and bo > 6q. Again we emphasize
that the points s and e are in free space. So, we acquire:

ao+op >aw & bo+0oq>bw (6a)
= 2a0 > aw & 2bo > bw (6b)
= 2(ao + bo) > aw + bw (6¢)

Where @0 + bo and @w + bw are respectively parts of paths SP(Z¢™*") and
SP'(Zme*). Obviously, these two relations are valid for all the disks throughout
these paths. Then, Eq. (6¢) is valid for all SP(Z¢*"*¢") and SP’(Z™*) subpaths.
Consequently, equations (6) and (3) lead us to:

2LSP(I™) > L(SP(T™*)) (7)
|

If the disks are sufficiently far from each other, the approximation factor of the
algorithm in Theorem 3 will be improved to more accurate values. So, in the
following we prove that the larger the distances between disks, the better the
approximation factor we get (i.e. closer to 1).

! The sequence of obstacles and their endpoints throughout a path.
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Fig. 7. An edge connects two arbitrary disks in path SP(Z°"*").

Definition 7 As defined by [14], a given set of disks with the largest radius
Tmaz 0T€ k-separable when for the mazimum value of k the minimum distance
between each pair of disks is at least k.rpqz-

Theorem 4. Consider a workspace such that the imprecise obstacles’ endpoints
are k-separable disks with k > 0. Now, in the approximation algorithm assuming
the center of all disks as the placement T¢¢™¢" for Maxz-SPP, we have

2
=)

Proof. Here, we assume SP(Z™%), SP'(Z™%) and SP(Z"*") are similar to
those in theorem 3.

As exhibited in Fig. 7, edge e connects two arbitrary disks D; and D; in
SP(Z°"e") path. Now, the length of this edge is L£(e) = d + r; + rj, where r;
and r; represent the radius of disks D; and Dj, respectively and d denotes the
minimum distance between disks.

In the SP’(Z™") path, ¢’ is an edge between two arbitrary points of D; and
D;. Clearly, we have L(e) < d + 2r; + 2r; and then:

L(SP(Z™")) < LISP(T*™T)) (9)

L(e) ri+r;+d
Lle) — L(e)
ritritd _ rid i+ krme
2ri +2rj+d ~ 21 + 21 + kTimaz
Tmaz + Tmaz + K-Tmax - k+2 - 2
Wmaz + 2maz + KTmaz k+4  k+4

Since equations (10) are valid for all disk pairs in the SP(Z¢"*¢") path, through-
out the path we have:
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LISP(Temer)) ki +2
L(SP/(ZTmer)) = k+4

k+2 :
center > ! (T max
= L(SP(Z*") > 1= L(SP'(T™))

(11)

Eventually, from equations (3) and (11) we obtain:

E+2 k+2
P Im(l.’II g
L LSPET)

L: SP/ Imam < £ SP Icenter 12
T LSP/(ET™) < L(SPE@)  (12)

Therefore, we showed that the approximation factor is 1 — ,%M; and tends to
1 for larger values of k. |

Note that we obtain this result when the center of all disks are assuming to be
the placement Z¢"*". Now, obviously farther disks (i.e. larger value of k) leads
the algorithm to more accurate approximation factors (i.e. closer to 1).

5 Minimum Shortest Path Problem (Min-SPP)

Here, we prove that Min-SPP is NP-hard for any metric L, ,p > 1. For this first,
we show that the Existence Path Problem (EPP) is reducible to the Min-SPP.
In other words, we show that

EPP <, Min — SPP (13)

Then by reducing the 3SAT problem to EPP, we show the NP-hardness of
Min-SPP. Now, for prove the (13) reduction with respect to the same inputs for
both problems, it is enough to show that the Min-SPP output will lead us to
the output of EPP.

Having a set of optimal instances (Z™") as the output that minimizes the
shortest path, we are able to calculate the length of shortest path by applying
associated algorithms. Taking any length values except infinity, means that there
exists at least one path from s to e. Hence, the EPP returns YES; otherwise if
the path has an infinite length, there would be no path from s to e for any
possible Z. So, the EPP will return NO.

Theorem 5. Suppose we are given a workspace contains a set of segment 0b-
stacles and a set of horizontal unit-length segments in the LPGUM as imprecise
points for some obstacles’ endpoints. Obstacles are assumed to be horizontal or
vertical segments that can have common intersections only at their endpoints.
In such a workspace for a disk robot Min-SPP and EPP are NP-hard for any
metric L, ,p > 1.
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Fig. 8. Conversion of a 3SAT input like (x1 VZ1 Va2) A (Z1 VT2 VZ3) A (x1 VX2V Xa),
to EPP’s.

Proof. Here, we will not pursue the details on the LPGUM because this would
take us too far from our goal. For more details about this model see [10].

For proving the NP-hardness of EPP, we show that the 3SAT problem is
reducible to EPP. To this end, EPP returns YES if and only if the 3SAT formula
1) is satisfiable.

Converting the 3SAT input to the input of EPP should satisfy the following
conditions:

1. If at least a variable in one clause takes a true value, then there must be an
unobstructed path for the robot from the gate corresponding to this clause.

2. The path from s to e exists in EPP if there exist paths from the gates
corresponding to the all clauses in . In other words, the s to e path will be
blocked even if the gate of one clause is obstructed.

3. The variable z; in an arbitrary clause in formula 1 can not take true and
false values, simultaneously. It means that variables should be either true or
false.

As Fig. 8 shows, for satisfying these three conditions we construct the EPP
workspace from each formula ¢ as follows. First of all,if there is m clause in
formula 1 corresponding to the each clause of C;,1 < j < n, we consider a
gate with three entrance. In this configuration, thicker and more thin segments
represent, precise obstacles and imprecise obstacles with one imprecise endpoint,
respectively. Notice that the unit-length segments with endpoints 1 and 2 in the
left panel of Fig. 8 show imprecise endpoint of obstacles. We assume a disk robot
with the radius of half length of the unit-length segments. So, it passes through
a gate when it is totally open.

Secondly, according to Fig. 8, for imprecise segments we place variables on
vertices 1 and negated variables on vertices 2. Therefore, all clauses meet con-
dition 1 of converting the input of 3SAT to EPP’s. Now, for each formula v in
3SAT problem we configure a workspace like Fig. 8, in which s and e are the
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leftmost and rightmost places, respectively. Considering a gate corresponding to
each clause, the two first conditions of conversion would be satisfied. Because
the robot have a path if at least an entrance in each gate is open. Also, the robot
can migrate from s to e if there is no gate with all three entrances closed.

For satisfying the third condition, we associate all x;s, 1 < i < n together
based on the LPGUM properties where n is the number of variables in formula
1. In this sense, for example, all z1s are dependent together and should take the
same values.

Therefore, existing a path from s to e means that there exists at least one
unobstructed entrance corresponding to a variable in each clause.

By assigning the true value to the variables whose entrance is open, we can
find a true assignment in the corresponding formula . On the other side, if the
path from s to e does not exist, there is at least a clause like C';,1 < j < n that
all its corresponding entrances are obstructed. Then, there is no variable in C}
ables to take a true value. So, the formula % is not satisfiable.

Eventually, since the existence or non-existence of the path from s to e does
not depend on the any metric L, ,p > 1, then we conclude that EPP is NP-hard
for all such metrics. |

Therefore, regarding the NP-hardness of EPP for any metric L,,p > 1
through horizontal and vertical segment obstacles, the Min-SPP is also NP-hard
under the above-mentioned conditions.

5.1 Approximation Algorithm for Min-SPP

We have a workspace which the endpoints of its imprecise segment obstacles
are k-separable disks. We show the approximation algorithm in section 4.1 that
members of approximate placement are selected at center of disks have 1 + %
approximation factor for Min-SPP.

Theorem 6. Consider a workspace such that the imprecise obstacles’ endpoints
are k-separable disks with k > 0. Now, in the approximation algorithm assuming
the center of all disks as the placement T¢™€" for Min-SPP, we have

(1 + %)E(Imin) Z £(Icen,ter) (14)
Proof. We assume that L£(Z¢"") and SP(Z°"") are introduced as in Defi-
nition 4. We define SP(Z™") and £(Z™™) as the shortest path and its length in
the optimal placement for Min-SPP, respectively. Now, by introducing S P’ (Z¢¢ter)
as a path from s to e with the same topology as SP(Z™™) that selects the in-
stances of Z¢™¢" for 7, we will have:

E(Icenter) g L(SPI(Icenter)) (15)

Suppose two arbitrary disks along the path of SP’(Z¢"*") connected by e.
As Fig. 7 shows, the length of this link is: £L(e) =d+r; +7;
Let €’ be the link of D; and D; disks in SP(Z™™). Then we have: L(e') > d
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Therefore,

L) L) S d

Lle) d+ri+r; —d+ri+r;

- d > k-rmaw > k'T’"L(L.'L' _ k
d+r;+r; k.rmaz + 1 + 15 k.Tmaz + Tmaz + Tmas k+2

Eventually, for each pair of disks throughout SP(Z¢""), Eq. (16) is valid.
Thus,

(16)

£(ITILi7L) - k
E(SP/(_’Zcenter)) - k+2

= C(Imzn) 2 k L:(SP/(Icenter))
k+2 (17>

; k
Imzn > P/ Icenter
= LT 2 s L(SP ()
k42

k
And according to Eq. (15) and (17) we conclude that:

ﬁ(Imzn) > ﬁ(SP/(Icenter))

< k+2

E(Icenter) § l:(SP/(Icenter)) [’

L(T™™) (18)
[}

Analogous to Max-SPP, here we have proved that the approximation factor of
this algorithm is 1+ % It obviously means that the farther the distance between
disks, the closer the approximation factor to 1.

6 Conclusion

In this paper, we modeled the imprecise points by using some geometric ap-
proaches and proved that the Maximum Shortest Path Problem (Max-SPP) for
a point robot is NP-hard and its decision version is NP-complete. For this proof,
we considered the obstacles to be segments and their endpoints to be imprecise
points modeled as segments. Remarkably, the obstacles can only be intersected
at their endpoints. In addition, we presented an approximation algorithm with
approximation factors of 1/2 and 1 — k%-zi for disk and k-separable disk as im-
precise points, respectively.

Furthermore, We studied the Minimum Shortest Path Problem (Min-SPP)
in LPGUM. We proved that for a disk robot, Min-SPP is NP-hard for any metric
L, ,p > 1, even when the imprecise regions are modeled as segments. Finally,
we presented a parameterized approximation algorithm for this problem with
approximation factor 1+ %

A possible future work includes the investigation of the hardness of Max-SPP
and Min-SPP for different shapes which imprecise points could be modeled with.
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